extension | φ:Q→Aut N | d | ρ | Label | ID |
C33.1C32 = C32.24He3 | φ: C32/C1 → C32 ⊆ Aut C33 | 81 | | C3^3.1C3^2 | 243,3 |
C33.2C32 = C33.C32 | φ: C32/C1 → C32 ⊆ Aut C33 | 81 | | C3^3.2C3^2 | 243,4 |
C33.3C32 = C33.3C32 | φ: C32/C1 → C32 ⊆ Aut C33 | 81 | | C3^3.3C3^2 | 243,5 |
C33.4C32 = C32.27He3 | φ: C32/C1 → C32 ⊆ Aut C33 | 81 | | C3^3.4C3^2 | 243,6 |
C33.5C32 = C32.28He3 | φ: C32/C1 → C32 ⊆ Aut C33 | 81 | | C3^3.5C3^2 | 243,7 |
C33.6C32 = C32.29He3 | φ: C32/C1 → C32 ⊆ Aut C33 | 81 | | C3^3.6C3^2 | 243,8 |
C33.7C32 = C33.7C32 | φ: C32/C1 → C32 ⊆ Aut C33 | 81 | | C3^3.7C3^2 | 243,9 |
C33.8C32 = C92⋊7C3 | φ: C32/C1 → C32 ⊆ Aut C33 | 81 | | C3^3.8C3^2 | 243,43 |
C33.9C32 = C92⋊4C3 | φ: C32/C1 → C32 ⊆ Aut C33 | 81 | | C3^3.9C3^2 | 243,44 |
C33.10C32 = C92⋊5C3 | φ: C32/C1 → C32 ⊆ Aut C33 | 81 | | C3^3.10C3^2 | 243,45 |
C33.11C32 = C92⋊8C3 | φ: C32/C1 → C32 ⊆ Aut C33 | 81 | | C3^3.11C3^2 | 243,46 |
C33.12C32 = C92⋊9C3 | φ: C32/C1 → C32 ⊆ Aut C33 | 81 | | C3^3.12C3^2 | 243,47 |
C33.13C32 = He3.C32 | φ: C32/C1 → C32 ⊆ Aut C33 | 27 | 9 | C3^3.13C3^2 | 243,57 |
C33.14C32 = He3⋊C32 | φ: C32/C1 → C32 ⊆ Aut C33 | 27 | 9 | C3^3.14C3^2 | 243,58 |
C33.15C32 = C32.C33 | φ: C32/C1 → C32 ⊆ Aut C33 | 27 | 9 | C3^3.15C3^2 | 243,59 |
C33.16C32 = C9.2He3 | φ: C32/C1 → C32 ⊆ Aut C33 | 27 | 9 | C3^3.16C3^2 | 243,60 |
C33.17C32 = 3- 1+4 | φ: C32/C1 → C32 ⊆ Aut C33 | 27 | 9 | C3^3.17C3^2 | 243,66 |
C33.18C32 = C33⋊C9 | φ: C32/C3 → C3 ⊆ Aut C33 | 27 | | C3^3.18C3^2 | 243,13 |
C33.19C32 = C32.19He3 | φ: C32/C3 → C3 ⊆ Aut C33 | 81 | | C3^3.19C3^2 | 243,14 |
C33.20C32 = C32.20He3 | φ: C32/C3 → C3 ⊆ Aut C33 | 81 | | C3^3.20C3^2 | 243,15 |
C33.21C32 = He3⋊C9 | φ: C32/C3 → C3 ⊆ Aut C33 | 81 | | C3^3.21C3^2 | 243,17 |
C33.22C32 = 3- 1+2⋊C9 | φ: C32/C3 → C3 ⊆ Aut C33 | 81 | | C3^3.22C3^2 | 243,18 |
C33.23C32 = C3×C32⋊C9 | φ: C32/C3 → C3 ⊆ Aut C33 | 81 | | C3^3.23C3^2 | 243,32 |
C33.24C32 = C92⋊3C3 | φ: C32/C3 → C3 ⊆ Aut C33 | 81 | | C3^3.24C3^2 | 243,34 |
C33.25C32 = C9×He3 | φ: C32/C3 → C3 ⊆ Aut C33 | 81 | | C3^3.25C3^2 | 243,35 |
C33.26C32 = C9×3- 1+2 | φ: C32/C3 → C3 ⊆ Aut C33 | 81 | | C3^3.26C3^2 | 243,36 |
C33.27C32 = C34.C3 | φ: C32/C3 → C3 ⊆ Aut C33 | 27 | | C3^3.27C3^2 | 243,38 |
C33.28C32 = C9⋊He3 | φ: C32/C3 → C3 ⊆ Aut C33 | 81 | | C3^3.28C3^2 | 243,39 |
C33.29C32 = C32.23C33 | φ: C32/C3 → C3 ⊆ Aut C33 | 81 | | C3^3.29C3^2 | 243,40 |
C33.30C32 = C9⋊3- 1+2 | φ: C32/C3 → C3 ⊆ Aut C33 | 81 | | C3^3.30C3^2 | 243,41 |
C33.31C32 = C33.31C32 | φ: C32/C3 → C3 ⊆ Aut C33 | 81 | | C3^3.31C3^2 | 243,42 |
C33.32C32 = C3×He3.C3 | φ: C32/C3 → C3 ⊆ Aut C33 | 81 | | C3^3.32C3^2 | 243,52 |
C33.33C32 = C3×He3⋊C3 | φ: C32/C3 → C3 ⊆ Aut C33 | 81 | | C3^3.33C3^2 | 243,53 |
C33.34C32 = C3×C3.He3 | φ: C32/C3 → C3 ⊆ Aut C33 | 81 | | C3^3.34C3^2 | 243,54 |
C33.35C32 = C9.He3 | φ: C32/C3 → C3 ⊆ Aut C33 | 27 | 3 | C3^3.35C3^2 | 243,55 |
C33.36C32 = C32×3- 1+2 | φ: C32/C3 → C3 ⊆ Aut C33 | 81 | | C3^3.36C3^2 | 243,63 |
C33.37C32 = C3×C9○He3 | φ: C32/C3 → C3 ⊆ Aut C33 | 81 | | C3^3.37C3^2 | 243,64 |
C33.38C32 = C3.C92 | central extension (φ=1) | 243 | | C3^3.38C3^2 | 243,2 |
C33.39C32 = C3×C9⋊C9 | central extension (φ=1) | 243 | | C3^3.39C3^2 | 243,33 |