Extensions 1→N→G→Q→1 with N=C33 and Q=C32

Direct product G=N×Q with N=C33 and Q=C32
dρLabelID
C35243C3^5243,67

Semidirect products G=N:Q with N=C33 and Q=C32
extensionφ:Q→Aut NdρLabelID
C331C32 = C32⋊He3φ: C32/C1C32 ⊆ Aut C3327C3^3:1C3^2243,37
C332C32 = C33⋊C32φ: C32/C1C32 ⊆ Aut C33279C3^3:2C3^2243,56
C333C32 = 3+ 1+4φ: C32/C1C32 ⊆ Aut C33279C3^3:3C3^2243,65
C334C32 = C3×C3≀C3φ: C32/C3C3 ⊆ Aut C3327C3^3:4C3^2243,51
C335C32 = C32×He3φ: C32/C3C3 ⊆ Aut C3381C3^3:5C3^2243,62

Non-split extensions G=N.Q with N=C33 and Q=C32
extensionφ:Q→Aut NdρLabelID
C33.1C32 = C32.24He3φ: C32/C1C32 ⊆ Aut C3381C3^3.1C3^2243,3
C33.2C32 = C33.C32φ: C32/C1C32 ⊆ Aut C3381C3^3.2C3^2243,4
C33.3C32 = C33.3C32φ: C32/C1C32 ⊆ Aut C3381C3^3.3C3^2243,5
C33.4C32 = C32.27He3φ: C32/C1C32 ⊆ Aut C3381C3^3.4C3^2243,6
C33.5C32 = C32.28He3φ: C32/C1C32 ⊆ Aut C3381C3^3.5C3^2243,7
C33.6C32 = C32.29He3φ: C32/C1C32 ⊆ Aut C3381C3^3.6C3^2243,8
C33.7C32 = C33.7C32φ: C32/C1C32 ⊆ Aut C3381C3^3.7C3^2243,9
C33.8C32 = C927C3φ: C32/C1C32 ⊆ Aut C3381C3^3.8C3^2243,43
C33.9C32 = C924C3φ: C32/C1C32 ⊆ Aut C3381C3^3.9C3^2243,44
C33.10C32 = C925C3φ: C32/C1C32 ⊆ Aut C3381C3^3.10C3^2243,45
C33.11C32 = C928C3φ: C32/C1C32 ⊆ Aut C3381C3^3.11C3^2243,46
C33.12C32 = C929C3φ: C32/C1C32 ⊆ Aut C3381C3^3.12C3^2243,47
C33.13C32 = He3.C32φ: C32/C1C32 ⊆ Aut C33279C3^3.13C3^2243,57
C33.14C32 = He3⋊C32φ: C32/C1C32 ⊆ Aut C33279C3^3.14C3^2243,58
C33.15C32 = C32.C33φ: C32/C1C32 ⊆ Aut C33279C3^3.15C3^2243,59
C33.16C32 = C9.2He3φ: C32/C1C32 ⊆ Aut C33279C3^3.16C3^2243,60
C33.17C32 = 3- 1+4φ: C32/C1C32 ⊆ Aut C33279C3^3.17C3^2243,66
C33.18C32 = C33⋊C9φ: C32/C3C3 ⊆ Aut C3327C3^3.18C3^2243,13
C33.19C32 = C32.19He3φ: C32/C3C3 ⊆ Aut C3381C3^3.19C3^2243,14
C33.20C32 = C32.20He3φ: C32/C3C3 ⊆ Aut C3381C3^3.20C3^2243,15
C33.21C32 = He3⋊C9φ: C32/C3C3 ⊆ Aut C3381C3^3.21C3^2243,17
C33.22C32 = 3- 1+2⋊C9φ: C32/C3C3 ⊆ Aut C3381C3^3.22C3^2243,18
C33.23C32 = C3×C32⋊C9φ: C32/C3C3 ⊆ Aut C3381C3^3.23C3^2243,32
C33.24C32 = C923C3φ: C32/C3C3 ⊆ Aut C3381C3^3.24C3^2243,34
C33.25C32 = C9×He3φ: C32/C3C3 ⊆ Aut C3381C3^3.25C3^2243,35
C33.26C32 = C9×3- 1+2φ: C32/C3C3 ⊆ Aut C3381C3^3.26C3^2243,36
C33.27C32 = C34.C3φ: C32/C3C3 ⊆ Aut C3327C3^3.27C3^2243,38
C33.28C32 = C9⋊He3φ: C32/C3C3 ⊆ Aut C3381C3^3.28C3^2243,39
C33.29C32 = C32.23C33φ: C32/C3C3 ⊆ Aut C3381C3^3.29C3^2243,40
C33.30C32 = C9⋊3- 1+2φ: C32/C3C3 ⊆ Aut C3381C3^3.30C3^2243,41
C33.31C32 = C33.31C32φ: C32/C3C3 ⊆ Aut C3381C3^3.31C3^2243,42
C33.32C32 = C3×He3.C3φ: C32/C3C3 ⊆ Aut C3381C3^3.32C3^2243,52
C33.33C32 = C3×He3⋊C3φ: C32/C3C3 ⊆ Aut C3381C3^3.33C3^2243,53
C33.34C32 = C3×C3.He3φ: C32/C3C3 ⊆ Aut C3381C3^3.34C3^2243,54
C33.35C32 = C9.He3φ: C32/C3C3 ⊆ Aut C33273C3^3.35C3^2243,55
C33.36C32 = C32×3- 1+2φ: C32/C3C3 ⊆ Aut C3381C3^3.36C3^2243,63
C33.37C32 = C3×C9○He3φ: C32/C3C3 ⊆ Aut C3381C3^3.37C3^2243,64
C33.38C32 = C3.C92central extension (φ=1)243C3^3.38C3^2243,2
C33.39C32 = C3×C9⋊C9central extension (φ=1)243C3^3.39C3^2243,33

׿
×
𝔽